The Role of Eco-Hydraulics in the Restoration of a Degraded Urban Stream Beverley Hills Creek, St. Catharines, Ontario Ian D. Smith, B.Math., M.Sc., OLS/OLIP, EP **Fluvial Geomorphologist**

5th International Conference on Natural Channel Systems 27 September 2016 – Session T3D Urban Streams In association with:

Presentation Overview

- Urban Stream Segment Restoration:
 - Location,
 - Context.
- The Challenge,
- Solution in the Context of Energy Management,
- Solution with Habitat Features Added,
- Thanks, Questions and Closure.

Beverley Creek Location

0.5

0.25

0

 92.75 ha (0.93 km²) Tributary Area Largely Impervious,
 Reduced Baseflow,
 'Flashy' Storm Hydrograph.

E E

Kilometers

1.5

Storm Water Hydrograph (Pre-versus Post-Development)

Study Location - Beverley Creek

100

Q_{BF} ≈ 2.8 m³/s,
 W_{BF} ≈ 5 to 6 m,
 D_{BF} ≈ 0.7 m,
 V_{BF} ≈ 1.0 m/s,
 W/D ≈ 16 (high ratio),
 ER < 1.2 (severe),
 Threshold Grain Size ≈ 20 mm (per Shields, 1936)
 D84 ≈ 60 mm (2.4 in.).

Meters 200

09/01/2014 3:00:49 PM (-5.0 hrs) Dir=W UTM=17T 642087mE 4784585mN Alt=267ft MSL NAD83

'Levitating' Culvert footings!?

'Levitating' Culvert footings!?

09/01/2014 2:59:20 PM (-5.0 hrs) Dir=SW UTM=17T 642054mE 4784552mN Alt=270ft MSL NAD83

Previous attempts at stabilization ...

06/08/2014 3:12:21 PM (-4.0 hrs) Dir=SW UTM=17T 642079mE 4784591mN Alt=267ft MSL NAD83

... had not worked over time.

What to do?

Damp peaks and/or Divert water from Runoff
 (Q) back to (ET+i) ... LIDs?

Retrofit established infrastructure on a large neighbourhood scale ... likely not feasible (\$ and politics)!

Q = P - (ET + i)

What to do? (Continued)

Harden the bed and banks?

- 1960's approach; lots of evidence for continued failure(s),
- Push the problem(s) downstream!

Cooksville Creek, reach downstream of concrete lined channel.

Cooksville Creek, Mississauga, Ontario (November 2014)

What to do? (Continued)

Opportunities to balance system equilibrium per Lane's Sediment Balance (Lane, 1955)?

- Limited opportunity; sediment supply 'urbanized',
- 'Clear Water Discharge' is in fact the problem,
- Sediment <u>source</u> has been shifted from the upland areas of the watershed to the channel itself!

Source: https://riverrestoration.wikispaces. com/Sediment+transport+models

What to do? (Continued)

- Watershed is irreversibly changed (urbanized); no longer a "Natural" Channel!
- Too much energy in this urbanized system! Manage E! Threshold Channel Design ...
- Play' with the Channel's Energy Balance
 - (minimize energy wherever possible without loosing conveyance efficacy).
- While we are there (dissipating energy), stabilize with NCD techniques and build habitat features ("Build it and they will come").

Manage the Energy in the Stream! (Review and/or Primer)

$E = Z + D + V^2/2g$

Daniel Bernoulli, 1738

Conservation of Energy:

- Potential Energy, in metres (Z) +
- Depth of Flow, in metres (D) +
- Kinetic Energy, in metres (V²/2g) ... a function of velocity, aka Velocity Head.

 Specific Energy (SE) is (D + V²/2g) or Depth + Kinetic Energy (velocity head).

Energy Budget in the Stream (graphic)

Specific Energy in the Stream (graphic)

For constant Flow Rate:

What does this all mean?

If we are worried about erosion: E = Z + D +V²/2g
We want to minimize energy (SE) through the reach!
Minimum energy (SE_{min}) happens at critical depth (D_{crit}) and thus V_{crit} ...
In natural systems (that have evolved equilibria), these

Nith River, Paris, Ontario (September 2007)

Natural Channel Riffle (Schematic)

Natural Channel Riffle (Reality)

28/10/2013 10:49:51 AM (-4.0 hrs) Dir=NE UTM=17T 548903mE 4783141mN Alt=785ft MSL NAD83

Created Riffle Analogues (J-Hook Vanes), Nith River, Paris, Ontario (October 2013); near $Q_{BF} \approx 60 \text{ m}^3/\text{s}$

Natural Channel Riffle (Reality)

Created Riffles (J-Hook Vanes), Nith River, Paris, Ontario (October 2013); near $Q_{BF} \approx 60 \text{ m}^3/\text{s}$

Natural Channel Riffle (Reality)

28/10/2013 10:49:51 AM (-4.0 hrs) Dir=NE UTM=17T 548903mE 4783141mN Alt=785ft MSL NAD83

Created Riffles (J-Hook Vanes), Nith River, Paris, Ontario (October 2013); near $Q_{BF} \approx 60 \text{ m}^3/\text{s}$

We Can Design & Build Riffles (NCD)

Source:

Newbury, R. (2008). Stream Restoration Design Manual. Fredericton, New Brunswick, Canada: Canadian Rivers Institute, University of New Brunswick.

With Permission.

'Force' criticality at regular intervals in the stream to dissipate energy.

Newbury Weirs

(aka Rocky Ramps or Created Riffles)

Energy Management Strategy Beverley Creek

- 1. Restore & stabilize the culvert bottom:
 - Determine stable particle sizes: D₈₄ x 2.0 FS = 60 mm x 2.0 = at least 120 mm or 5 in. sub-rounded cobble,
 - Bring bed elevation to top of footing inside culvert (embed),
 - Increased roughness will decrease velocity (friction).

5"+ sub-rounded limestone cobble

Habitat Value

 Embedded Culvert provides turbulence/aeration + insect habitat.

16/09/2015 3:30:24 PM (-4.0 hrs) Dir=NNW UTM=17T 642084mE 4784599mN Alt=272ft MSL NAD83

350g

Energy Management Strategy Beverley Creek

2. First riffle in conjunction with plunge pool:

- Plunge pool created at culvert outlet to fully dissipate culvert exit energy (expansion of flow cross section),
- Flows taken down 10H:1V grade of 5"+ sub-rounded stone (friction),
- Flow lines directed to bank with a live/vegetated crib wall shaped into a spiral curve (helical flow steered into pool).

Plunge pool and vegetated crib wall at embedded culvert outlet.

Habitat Value

- Pool provides refuge habitat (boulders in pool for differentiation).
- Vegetated crib wall provides cover in presence of helical flow.
- Exit riffle controls pool depth and aerates, creates benthic habitat.

2015-10-28 11:23:58 AM (-4.0 hrs) Dir=ESE UTM=17T 642064mE 4784612mN Alt=291ft MSL NAD83

2015-10-28 11:11:38 AM (-4.0 hrs) Dir=WNW UTM=17T 642083mE 4784588mN Alt=276ft MSL NAD83

Energy Management Strategy Beverley Creek

3. Place Rocky Ramps/Newbury Weirs:

- Two required to force criticality through ±100 metre reach, pools stepped to riffle toes,
- Mix of (2.0 FS x D₈₄) cobble, oversized (boulder) particles, and smaller particles (D₅₀ = coarse gravel) to make for varied

structure.

Rocky Ramp/Newbury Weir Detail, (UEM Consulting 2014).

Newbury Weir #2

Newbury Weir #1

Plunge Pool, Crib Wall and Control Riffle

Beverley Creek NCD Features

25

Meters

50

Habitat Value

- Riffle provides turbulence/aeration + insect habitat.
- Riffle boulders provide eddy currents/resting habitat.

01/10/2015 10:07:36 AM (-4.0 hrs) Dir=SE UTM=17T 642026mE 4784625mN Alt=272ft MSL NAD83

2015-10-28 11:22:15 AM (-4.0 hrs) Dir=NNE UTM=17T 642034mE 4784624mN Alt=279ft MSL NAD83

'One Storm' Post-Construction

2015-10-20 4:57:26 PM (-4.0 hrs) Dir=NE UTM=17T 642082mE 4784594mN Alt=329ft MSL NAD83

'One Year' Post-Construction

18-Jul-16 12:30:13 PM Dir=ESE UTM=17T 642089mE 4784591mN Alt=82m MSL NAD83

5th International Conference on Natural Channel Systems 27 September 2016 – Session T3D Urban Streams

The Role of Eco-Hydraulics in the Restoration of a Degraded Urban Stream

Please feel free to contact UEM at:

Ian D. Smith Fluvial Geomorphologist Urban & Environmental Management Inc. +1 905.321.2331 ismith@uemconsulting.com

Thanks to:

