

If we are going to design a restoration / rehabilitation project in urban watersheds, what is the quasi-stable condition?

What are the metrics?

What is important?

What are the interdependencies?

Can we apply relationships used in rural / wildland watersheds inter-changeably in urban systems?

RIVER RESEARCH AND APPLICATIONS River Res. Applic. 27: 738–753 (2011)

Published online 11 May 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.1391

ESTIMATING CHANNEL-FORMING DISCHARGE IN URBAN WATERCOURSES

W. K. ANNABLE,^{a,b*} V. G. LOUNDER^a and C. C. WATSON^b

^a Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada ^b Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523-1372, USA

RIVER RESEARCH AND APPLICATIONS

River Res. Applic. 28: 302-325 (2012)

Published online 26 September 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.1457

QUASI-EQUILIBRIUM CONDITIONS OF URBAN GRAVEL-BED STREAM CHANNELS IN SOUTHERN ONTARIO, CANADA

W. K. ANNABLE,^{a,b*} C. C. WATSON^b and P. J. THOMPSON^a

^a Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada ^b Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA

Urban watershed summary characteristics

Site Reference No.	Gauge†	Station Name	Effective Catchment Area (km ²)	Urban land use (%)	Channel Morphology	Cross-section Relief	Adjacent Land Use
1	02HC005	Don River at York Mills	95.5	72	Riffle-pool	Semi-confined	Golf cours
2	02HC017	Etobicoke Creek at Brampton	67.7	24	Riffle-pool	Floodplain dominated	Park
3	02HC030	Etobicoke Creek below QEW	215.4	62	Riffle-pool	Floodplain dominated	Park
4	02HB012	Grindstone Creek near Aldershot	83.9	13	Riffle-pool	Floodplain dominated	Park
5	02HD013	Harmony Creek at Oshawa	43.0	44	Riffle-pool	Floodplain dominated	Golf cours
6	02GA024	Laurel Creek at Waterloo	57.5	34	Riffle-pool	Floodplain dominated	Park
7	02HC029	Little Don River at Don Mills	135.1	70	Riffle-pool	Floodplain dominated	Park
8	02HC033	Mimico Creek at Islington	73.8	87	Riffle-pool	Floodplain dominated	Park
9	02HA014	Redhill Creek at Hamilton	56.3	66	Riffle-pool	Floodplain dominated	Park
10	02HB007	Spencer Creek at Dundas	156.0	9	Run-pool	Semi-confined	Urban
11	02HA022	Stoney Creek at Stoney Creek	19.2	15	Riffle-pool	Floodplain dominated	Park
12	02HA027	Walker Creek at St. Catherines	5.9	99	Riffle-pool	Floodplain dominated	Park

Change in Morphology frequency

-Elongated meander wave lengths

- Typically two or three riffles on a straight section between bends separated by intermediate pools.

Potential causes

-Sediment pulsing

- bedform manifestations to dissipate additional stream energy

Continuing Investigation

- Morphological Surveys (Form)
 - Longitudinal profiles
 - Cross sections
 - Diagnostic bed sampling
- Sediment Tracking / Sampling (Process)
 - Bedload measurements (Helley-Smith)
 - Inter-event-based particle tracking (RF-ID transponders)
- Longitudinal inventories
 - Floodplain relief
 - Bank heights
 - Riparian vegetation
 - Water surface characteristics (flood flow)
 - Infrastructure

Upper Left: RF-ID Tag Right: Morphological Surveys using GPS Lower Left: Helley-Smith Sampler

