

Long-term erosion monitoring on Niagara Escarpment watercourses

Anna C.J. Howes, Aquafor Beech Ltd.

Roger T.J. Phillips, Aquafor Beech Ltd. and Western University

Long Term Erosion Monitoring

- Used to assess impacts from land development (i.e. success of SWM measures)
- Important to distinguished between natural variations and developmentrelated impacts

How much natural variability is expected?

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

Site Information

- 20 sites
- 4 to 10 cross-sections per site
- 135 cross-sections total
- 3 surveys per year (spring, summer, fall)
- 6 years of data

Survey Control

Survey Control

Data Collection

Data Processing

Cross-Section Analysis

• Area

Width

BOB Area
BOB Width
BOB Width

Channel Width-

Depth

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

Site Classification

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

Site Statistics

Mean

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

Standard Deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Coefficient of Variance

$$C_v = \frac{\sigma}{\mu}$$

Cross-Sectional Area Standardized Data

Field Site Average Standardized by Monitoring Period Average

Monitoring Events, 2010-2015 (3 events per year)

Spatial versus Temporal Variability

Coefficient of Variation (CoV)

Average Spatial Variability (between cross-sections)

CoV Data	Average	Standard Deviation	Max / Min
Cross-Sectional Area	31%	15%	89% / 5%
Bankfull Width	21%	10%	54% / 6%
Bankfull Depth	24%	10%	73% / 9%

Average Temporal Variability (between seasonal monitoring events)

CoV Data	All Events	Annual Averages	Seasonal Only
Cross-Sectional Area	5.7%	4.5%	1.2%
Bankfull Width	5.0%	3.7%	1.2%
Bankfull Depth	5.2%	4.3%	0.9%
Expected Range: All Stream Classes All Parameters	5 – 6%	4 – 5%	1 – 2%

Note: Spatial variability is an order of magnitude larger then the seasonal variability!

Variance by Stream Class

CoV for Each Cross-Section through Time

t-tests: Is the mean CoV statistically different between the stream classes?

Differences in Variance between Stream Classes

p-values (two-tail) for t-tests assuming unequal variances (log-transformed data) 95% Confidence for Significance (p-value < 0.05)

All Seasonal Data	Cross-Sectional Area	Bankfull Width	Bankfull Depth
Cobble ≠ Queenston	0.022 ü	0.984 û	0.067 ~
Cobble ≠ Fine-grained	0.019 ü	0.040 ü	0.897 û
Fine-grained ≠ Queenston	0.567 û	0.045 ü	0.156 û

Annual Data	Cross-Sectional Area	Bankfull Width	Bankfull Depth
Cobble ≠ Queenston	0.043 ü	0.408 û	0.044 ü
Cobble ≠ Fine-grained	0.374 û	0.349 û	0.477 û
Fine-grained ≠ Queenston	0.611 û	0.156 û	0.031 ü

Observations

Queenston and fine-grained variances are statistically different from cobble for cross-sectional area Differences in variance of fine-grained are explained by *seasonal variability* in bankfull width Differences in variance of Queenston are largely explained by variance in bankfull depth (bed dynamics), which is NOT as sensitive to seasonal variability

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

Erosion Target Thresholds

to detect signals of development impacts

Cross-sectional area (typically ± 20% threshold)

Cross-Sectional Area	Avg. CoV	95 th Percentile	99 th Percentile
Cobble	4%	7%	11%
Fine-grained	7%	15%	24%
Queenston	7%	15%	32%

Bankfull depth (typically ± 20% threshold), substrate aggradation/degradation

Bankfull Depth	Avg. CoV	95 th Percentile	99 th Percentile
Cobble	4%	7%	11%
Fine-grained	5%	15%	17%
Queenston	7%	21%	33%

Typical 20% thresholds, may overestimate cobble, but OK for fine-grained and Queenston.

Local cross-section exceedances are common in the Queenston sites, but site averages typically remain below the erosion target threshold.

- Monitoring methodology
- 2. Site classification
- 3. Site statistics
- 4. Target thresholds
- 5. Conclusions

Stream Morphology Monitoring Recommendations to detect signals of development impacts

- Spatial variability is greater than temporal variability
 - Monitor more cross-sections rather than more often
- Fine-grained head water channels see higher seasonal variation
 - Multiple measurements annually are useful for these sites
 - Annual monitoring (once per year) may be sufficient for cobble and Queenston shale sites
- Variability differs by channel type
 - A "one-size-fits-all" approach to target thresholds may underestimate or over-estimate natural variability
 - Classification by alluvial bed material type is useful
 - Monitoring schemes and target thresholds should reflect the expected natural variation of different stream types