Fish Habitat Offsetting in Pristine Wilderness: Regulatory & Design Challenges

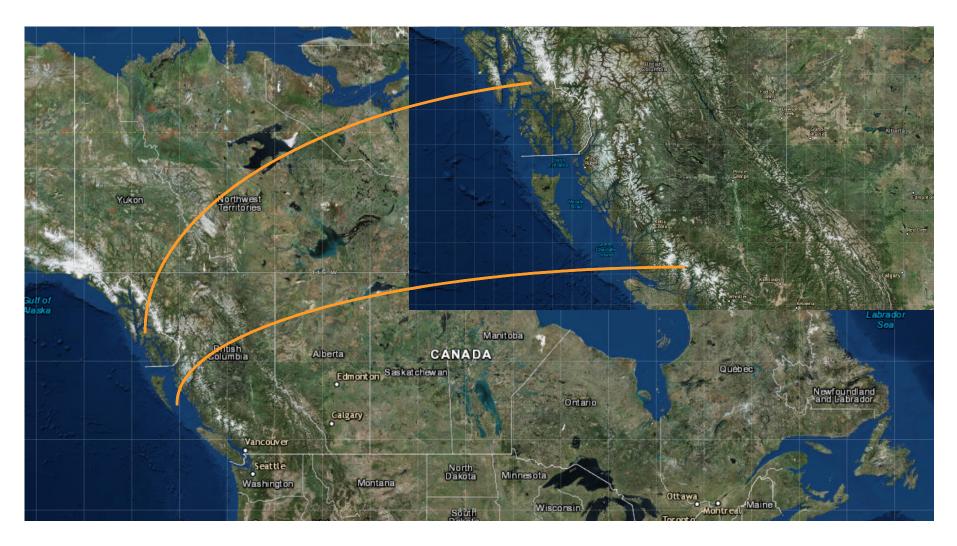
Natural Channel Design Conference, 2016 Niagara Falls

David Luzi, Ph.D, Fluvial Geomorphologist Heather Amirault, P.Eng., Restoration Engineer

Sept 26, 2016

The Scenario
Regulation
Habitat Loss

4 Offsetting



1 The Scenario

Coho Salmon dream home meets large scale coastal development

Where in the World

Implementing updated regulation

Regulation

Fisheries Act

"serious harm to fish is the death of fish or any permanent alteration to, or destruction of, fish habitat" (2012 Fisheries Act Section 35(1))

No fish were harmed in the making of this presentation

Regulation

Industry Arrives on the West Coast

- Avoid habitat
- Mitigate unavoidable impacts
- Offsetting

The Unavoidable Impacts

Regulation

Offsetting

- Prioritize offset near impact
- Offsetting may include non-habitat measures
 - Complementary measures
- Must account for serious harm for existing habitat under offset footprints (offset the offsetting)

Habitat Destruction & Permanent Alteration

- Type of habitat
- How much habitat
- Species and life stages
- Accounting area vs productivity

Measuring Habitat Loss - reality

- Mapping of waterbodies is incomplete
- Wetted areas may vary seasonally and with the tide
- West cost annual rain fall = < 2200 mm
- Field Effort (fish and survey)
- Degree of certainty

C	HANNEL	MEAS	JREMEN	ITS (int	terval	pacing	of the g	reater of	10 m or	Wb)			STREA	M BANKS		
thannel W	lidth (m)					16.1	0					a second second		LEFT BAN	Rigi	IT BAN
Vetted W	lafth (m)	126				14.4						Ht. (m)	THE OWNER	2.1	1.0	3
tes. Pool C	pth (m)					0,5	3					Shape	10 - El	\vee	V	
ankfull De	epth (m)	252				1.7	5					Slope (°)	States.	60	65	;
Gradient (S						.9.	0					Stability	10195	MS	MS	>
ool/niffle		240 ·	75	125	1	2	Stage	12	L		н	Veg. (%)	Contraction of	60	30	
phemeral	Interm	tent	a part ing	1.00	Y	N)	Dewa	terling	Y		(N)	- Rip, Wolth (m)		750	12	
	CHANNI	L CHA	RACTER	ISTICS	(CL)			WATER	QUALIT	Y (CL)		Dom. Texture	STATEMAN -	F	F	
attern	TM	ME	IM	IR	(SI)	ST	Temp	(°C)		. 5.1	5.	Sub, Texture		6	. (9	
slands	N	0	1	F	5	AN	Cond.	(µS/L)		29		Veg, Type		D	D	
ars	N	SD'	DG	MD	SP	BR	pH	- ASE SA		6.7	7	Veg. Stage		YF	. YF	с. С
oupling		QÇ)	P	С						11.4	0		STRE	AM BED		
onfine.	EN	CO	FC	OC	(N)	NA	NTUS		1.55			Organics	S. Coloris	- 1 BAL		
Aorph.	RB	CP	SP	LC	WL	BDC	Turbit	Mty	1	Г. (M)	LC	Fines (<2mm)	Stanger of C	SISTISTIST	30	•
					COVE	R (CL)						Gravel (2-64m	m)	and the second second	:20	
ot, Cover		0%	0-5%		5-20% >				Instream Veg.		Cobble (64-256mm)			TR		
LWD	SWD	DP	B	U		OV	1V	Tot (%)	1	Тур		Bouider (>256	(min	Carl Carl		
10		75		10	1	5	0	0	N	M	V A	Bedrock				
LWD Fun	C, N	F) A	Dist.	Q	EG	own C	losure (9	(1.20)	21-40 41	70 70-	90 >90	D95 (cm)	11	D (cm)	4	
					FEAT	URES						Embeddness	25%	25-50%	50-75%	>75%
Туре	Ht. (ii	i) Lr	gth (m)		Comments								Lat./Long.			
side citrar	vl -	7	30	side channel connected during reliable with wheter levels									W.p.	WP1.119 94 521144 598624		
							the d				<u> </u>					
	+	-		1				V V					-			

Offsetting Ratios

- How much is a m² of habitat worth?
- What type of habitat is appropriate?
 - Rearing vs spawning
 - Perennial vs ephemeral vs seasonal

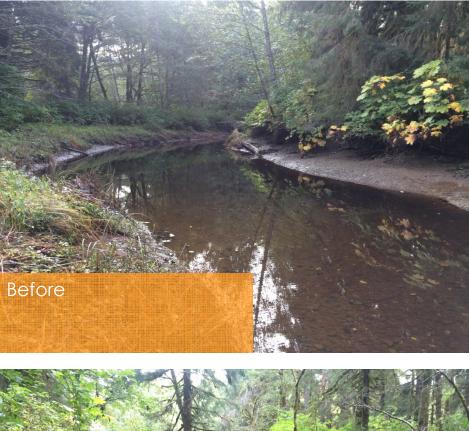
Recreating the dream home

Site Selection

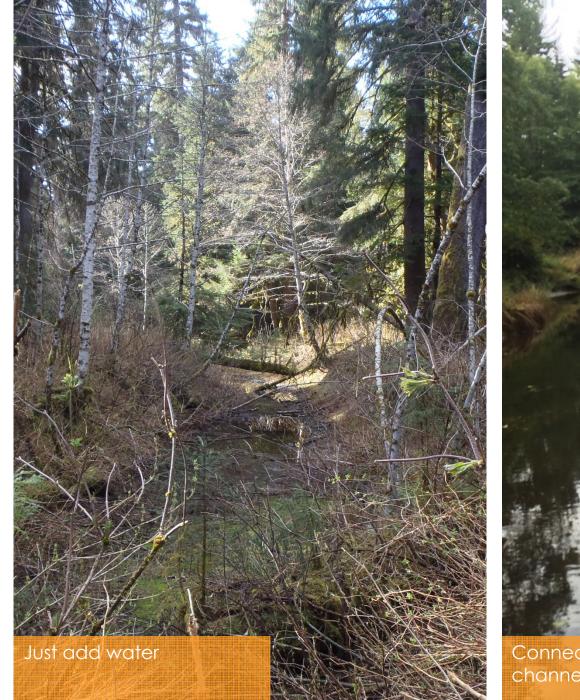
Search for mitigation sites = Big challenge in a pristine area

Based on:

- Proximity
- Land ownership
- The potential for stability and success
- Support from stakeholders

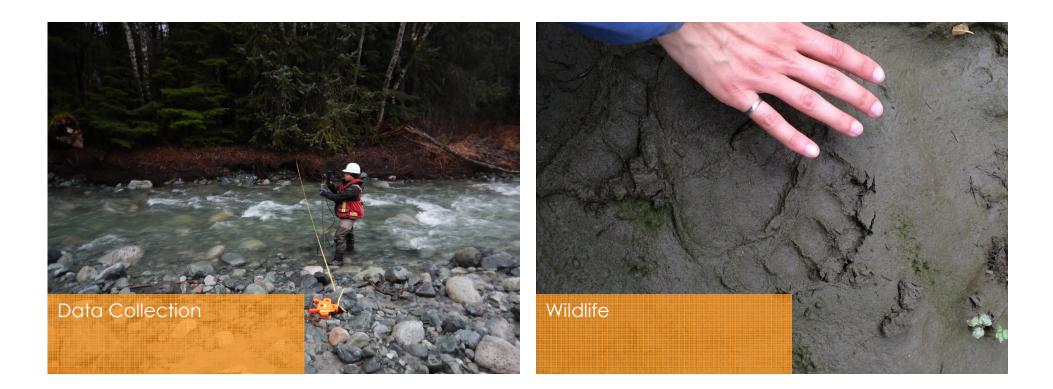


Types of Offsetting


Criteria based on habitat goals

Options for mitigation may include:

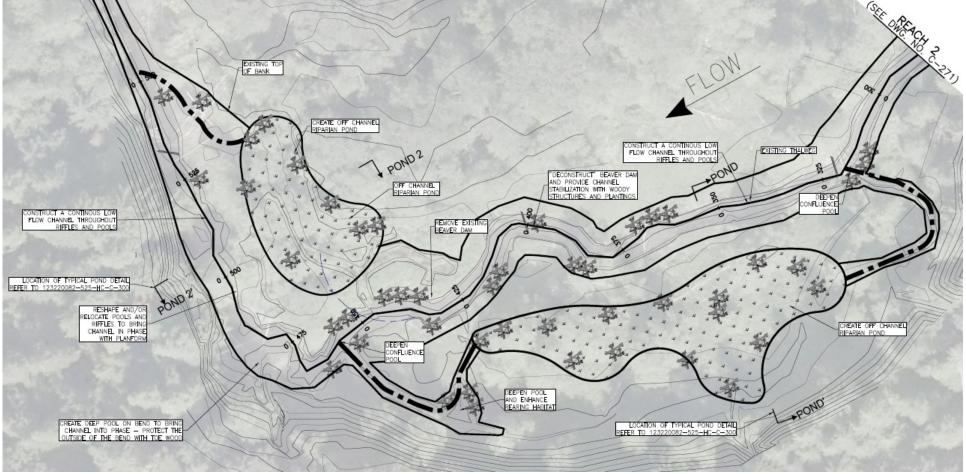
- Creating groundwater channels
- Creating side channels
- Enhancing riparian areas
- Enhancing instream habitat complexity
- Improving connectivity between water features


Data Requirements

Data Needs

- Flow data
- Tidal data
- Topographic data
- Groundwater data
- Soils information

Obtaining Data


- Remote site access
- Difficult Terrain
- Wildlife
- Dense vegetation
- Access timing related to tide levels

Design

- Risk
- Constructability
- Construction cost

- Maintenance
- Material sources
- Old growth

Some Case Study Stats

Amount of mitigation designed: 390,000 m²

Net contribution: 270,000 m²

Habitat Type	Net Area (m²)
Marine/ Estuarine	45,000
Wetland	142,000
Mainstem	83,000

Questions?

David Luzi, Ph.D. david.luzi@stantec.com

Heather Amirault, P.Eng. heather.amirault@stantec.com

