

5th International Conference on Natural Channel Systems

Case Study: 2-D Hydraulic Modelling of Proposed Fish Ramp to Design for Fish Passage Potential

September 26, 2016

Presenter: **Bradley Burrows**

Outline

- 1. Introduction
- 2. Methods of Design
- 3. Application of Methods
- 4. Model Results
- 5. Conclusions
- 6. Next Steps

Introduction

Problem Statement:

Simulate fish ramp design that promotes fish passage that could aid in overcoming limitations imposed by urbanization.

Methods of Design

- Theoretical Approach
- Physical Models
- Hydraulic Models

Theoretical Approach

- Design manuals (e.g. Introduction to Fishway Design, Katopodis, 1992)
- Publications (e.g. Passive propulsion in vortex wakes, Beal et al., 2006)

Physical Model

- Scaled model of design concept
- Simulate physical properties
- Test principals in flume

Hydraulic Model

- Virtual model
- Simulate physical characteristics
- Steady vs unsteady flow series
- 1D vs 2D/3D

Application to Problem Statement

- Design concept based on publication by Beal et al, 2006
- Physical model could be built to simulate design concept
- Virtual model to further validate design principals

Fish Ramp Design Concept

Ramp Design:

- 12m length with 1.2m drop (10% Slope)
- Offset flow path

Fish Ramp Simulation:

Flow = 0.05 m3/s

Fish Ramp Simulation:

Flow = 1.0 m3/s

Comparison of Fish Ramp Simulation to 10% sloped ramp with channel through center

• Flow = 0.05 m3/s

Comparison of Fish Ramp Simulation to 10% sloped ramp with channel through center

• Flow = 1.0 m3/s

Conclusions

- Design a fish ramp concept to overcome urban limitations
- 2-D hydraulic simulations
- Model results

Next Steps

- Further Iterations on Design Concept
- 2. Sensitivity Analysis

Thank you.

