# THE SCIENCE AND PRACTICE OF EROSION THRESHOLD THEORY

in Applied Geomorphology



# Roger TJ Phillips and Peter Ashmore







# **Erosion Threshold Awareness**

### The Science

- Boundary types and sediment **mixtures**
- The good ol' **Shields** parameter
- Don't be scared of **selective** mobility

# The Practice

What sometimes works, sort of, maybe...)

- Threshold versus **alluvial** channel beds
- Factors of **safety**
- **Uncertainty**, does it matter?
- Field **verification** of erosion thresholds





# **Bedload Transport of Sediment Mixtures**



Credit: John Gaffney (2009) University of Minnesota Department of Civil Engineering St. Anthony Falls Lab



**EROSION THRESHOLDS** 

Fluid Shear Stress =  $\tau_0$ Critical Shear Stress =  $\tau_c$  **Probability Distributions** 



Substantial grain movement

**Dimensionless Shields Number** 

EROSION THRESHOLDS OF MOTION (SHEILDS, 1936)



Also  $\theta_c$  **varies** with:

Average  $\theta_c = 0.045$ 0.03 - 0.06 Range 0.01 to >0.1

Miller et al. 1977

Buffington and Montgomery 1997

Bed-State: Church 1978 Slope: Lamb et al. 2008 Field-Measurements: Petit et al. 2015

# **Monte Carlo Simulation**

Adapted from Stewardson and Rutherford (2008), based on data from Buffington and Montgomery (1997)

 $\theta_c$  treated as a **random** variable with log-normal distribution mean = **0.045**, standard deviation = **0.03**, n = 1000 (per size, D)



# **Erosion Thresholds and Scale**



Average Channel Scale

# **Sediment Mobility Theory**

Grain Size  $\phi$ 



(Distribution graphs adapted from Venditti et al., In Press)

# **Sediment Mobility Theory**





(Distribution graphs adapted from Venditti et al., In Press)



HIDING FUNCTIONS

 $\theta_{ci}$ 

0.045

$$\theta_{ci} = a \left(\frac{D_i}{D_{50}}\right)^b$$

Kornar (1987, 1996)

 $a = \theta_{c50} \approx 0.045$ 

b = -1 Equal Mobility

-1 < b < 0 Selective Mobility

 $b \approx -0.6$  Average

# Example:

$$\theta_{ci} = 0.0375 \left(\frac{D_i}{D_{50}}\right)^{-0.872}$$

# SELECT REFERENCES

 $D_i/D_{50}$ 

• PARKER (1990)

http://hydrolab.illinois.edu/people/parkerg/default.asp

b = -1

 $D_i$ 

• WILCOCK and CROWE (2003)

http://www.stream.fs.fed.us/publications/bags.html

 $\tau_{ci}$ 



HIDING FUNCTIONS

$$\theta_{ci} = \theta_{c50} \left(\frac{D_i}{D_{50}}\right)^{b}$$

$$b = \frac{0.67}{1 + e^{(1.5 - D_i/D_{50})}}$$

 $\theta_{c50} = 0.021 + e^{(-20F_s)}$  F<sub>s</sub> is the fraction of sand

# Fractional (selective) sediment transport of sediment mixtures

h

- Non-linear effect of sand on gravel transport rates
- Two-part hiding function for more sandy and less sandy gravel mixtures
- Increases  $\theta_c$  for fine fractions (reducing sediment transport rates)
- Decreases  $\theta_c$  for course fractions (increasing sediment transport rates)
- As sand content increases, sediment transport rate increases for all grain sizes

# **Two Different Applications**

# Engineered Threshold Channel



Entrainment **threshold** (force/area) **Forced** riffles-pools and/or runs Armouring (**equal mobility** or immobility) Factors of **safety** for design stone sizing

#### River engineering:

**"Most"** channel designs, including stream restoration and **rehabilitation** in Ontario

# 'Natural' Alluvial Channel



Sediment **load** (mass/time) **Dynamic** bed morphology Fractional sediment transport (**selective mobility**) Sediment **mixture** gain-size distributions

#### **River assessment and channel design:**

"Some" **natural** channel designs in Ontario **Watershed** impacts, sediment **yield Stormwater** erosion control targets



### Chapter 8: Threshold Channel Design

**Allowable** shear stress

techniques ( $\theta_c = 0.045$ )

United States Department of Agriculture

Natural Resources Conservation Service

### Part 654 National Engineering Handbook

# **Stream Restoration Design**





### Notes:

# Adjustments for **mixtures**

$$\theta_{ci} = 0.0834 \left(\frac{D_i}{D_{50}}\right)^{-0.872}$$

### Chapter 9: Alluvial Channel Design

 Table 8-1
 General guidance for selecting the most appropriate channel design technique

| Technique                             | Significant<br>sediment load<br>and movable<br>channel<br>boundaries | Boundary<br>material<br>smaller than<br>sand size | Boundary<br>material<br>larger than<br>sand size | Boundary material<br>does not act as<br>discrete particles | No baseflow in<br>channel. Climate can<br>support permanent<br>vegetation |
|---------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|
| Allowable velocity                    |                                                                      | X                                                 |                                                  |                                                            |                                                                           |
| Allowable shear stress                |                                                                      |                                                   | X                                                |                                                            |                                                                           |
| Tractive power                        |                                                                      |                                                   |                                                  | X                                                          |                                                                           |
| Grass lined/tractive stress           |                                                                      |                                                   |                                                  |                                                            | Х                                                                         |
| Alluvial channel design<br>techniques | Х                                                                    |                                                   |                                                  |                                                            |                                                                           |

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/restoration/

# **Factor of Safety and Uncertainty**

# **Stone Sizes for River Engineering**

- References (e.g., **USDA**, NCHRP, AASHTO)
- Factor of **Safety** = 1.1 to 1.5
- **Common** recommendation is 1.2

# **Erosion Threshold Uncertainty** (does it matter?)

- Threshold channel design **depends...**
- Natural channels, alluvial channel design **yes!**

# 'Natural' Alluvial Channels

- Equal mobility (threshold) assumptions need to be **justified**.
- Selective mobility to estimate sediment load
- Sediment **yield**, connectivity, land use **impact**



# **Field Verification of Thresholds**

# **Field Bedload Measurements**

- Tagging, tracing
- Trapping, detention
- Impact, acoustics
- Sediment budgets

# **Need Standard Definitions**

- What measurement **technique**?
- **Threshold** stone sizes versus sediment load estimates?
- Length of **monitoring** period, quality of **hydrographs**?

# **Project Expectations**

- **Not** standard practice, cost and schedule limitations
- Practitioners that **do** "field truthing" should be:
  - Clear about scope and **limitations**
  - Open to **Publication** and peer-review

# Reliable field **truthing** is easier said then done!



# **Erosion Threshold Awareness**

### **The Science and Practice**

- Understand **limitations** of Shields number
- Don't be scared of **selective** mobility
- Threshold versus **alluvial** channels
- Factors of safety and **uncertainty**
- **Expectations** for Field Verification

# **Selective Mobility Applications**

- **Sediment** load, yield, budgets, monitoring
- Stormwater management erosion criteria



# Thank You! THE SCIENCE AND PRACTICE OF EROSION THRESHOLD THEORY

in Applied Geomorphology



# Roger TJ Phillips and Peter Ashmore







More Wilcock and Crowe (2003)



Uses **reference** shear stress  $(\tau_r)$  and **Shields** number  $(\theta_{r50}^*)$ 

**Non-linear** relation between sand content and sediment transport rates

As  $F_s \uparrow$ ,  $\theta_{r50}^*$  and  $\tau_r \downarrow$  thus **increasing** sediment transport rates for all sizes

**Two-part** trend in hiding function relative to  $\tau_r$  for single-sized sediment (1:1 line)

# Hiding function acts to:

Finer fractions:

 $\tau_r \uparrow (\downarrow \text{ sediment transport})$ 

Coarser fractions:

 $\tau_r \downarrow (\uparrow \text{ sediment transport})$ 

\*Sand changes gravel sediment transport



The Science and Practice of Erosion Threshold Theory in Applied Geomorphology

### **List of References**

- Lamb, M.P., Dietrich, W.E., Venditti, J.G. 2008. Is the critical Shields stress for incipient motion dependent on the channel-bed slope? *Journal of Geophysical Research*, 113: F02008 (1–20).
- Parker, G. 1990. Surface-based bedload transport relation for gravel rivers. *Journal of Hydraulic Research*, 28: 417–436.
- Petit, F., Houbrechts, G., Peeters, A., Hallot, E., Campenhout, J., Denis, A. 2015. Dimensionless critical shear stress in gravel-bed rivers. *Geomorphology*, 250: 308–320
- Phillips, R.T.J., Desloges, J.R. 2015. Glacial legacy effects on river landforms of the southern Laurentian Great Lakes. *Journal of Great Lakes Research*, 41: 951–964.
- Phillips, R.T.J., Desloges, J.R. 2015. Alluvial floodplain classification by multivariate clustering and discriminant analysis for low-relief glacially conditioned river catchments. *Earth Surface Processes and Landforms*, 40: 756-770.
- Phillips, R.T.J., Desloges, J.R. 2014. Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes. *Geomorphology*, 206: 271–287.
- Thayer, J.B., Phillips, R.T.J., Desloges, J.R. (2016, In Press). Downstream channel adjustment in a lowrelief, glacially conditioned watershed. *Geomorphology*.
- Wilcock, P.R., Crowe, J.C. 2003. Surface-based transport model for mixed-size sediment. *Journal of Hydraulic Engineering*, 129: 120–128.
- Venditti, J.G., Nelson, P.A., Bradley, R.W., Haught, D., Gitto, A.B. (In Press). Bedforms, structures, patches and sediment supply in gravel-bed rivers. *Gravel Bed Rivers Conference 2015*.