Treatments to Mitigate Aquatic Habitat Impacts Associated With Land and Resource Developments

Marc Gaboury

NATURAL CHANNEL SYSTEMS 5th International Conference September 26 & 27, 2016 Niagara Falls, Ontario

Hess Creek Alignment Jeopardizing Integrity of Trans-Alaska Pipeline

Concept of Deflector Placement

1991. Guidelines for Stabilising Waterways, Rural Water Commission of Victoria, Standing Committee on Rivers and Catchments, Victoria, Australia.

Constructed in 2005

Hess Creek Design

July 23, 2009

Cross Section Changes

Hess Creek Post-Construction

September 2007

Spring Freshet 2006

Hess Creek Vegetation on New Floodplain 2008 – Three Years After Construction

Hess Creek Four Years After Construction

7 & 11 Years After Construction August 24, 2012 July 18, 2016

Grey Stream – Fish Passage & Channel Stability

Drainage area 6.0 km² Bankfull width 9.1 m Gradient 3.3% Q_{mean annual flood} = 7.9 m³/s

 $Q_{50} = 23 \text{ m}^3/\text{s}$

Grey Stream – Existing Condition

- Channel had down-cut by ~1 m
- Pink salmon migration impediment at drive lane crossing

Grey Stream – Riffle Design

Four Riffles with 15:1 (6.7%) & 20:1 (5%) downstream face slopes with drops between riffles of 0.6-1.1 m (2.1-3.6 ft)

Grey Stream – Channel Capacity

<u>Channel Capacity with</u> <u>Proposed Riffle</u>

22.4 m³/s – very close to Q₅₀ = 23 m³/s

<u>Channel Capacity with</u> <u>Riffle + Floodplain</u>

- Channel Discharge of 8.8 m³/s to top of floodplain
- Floodplain Discharge of 4.5 m³/s

NATURAL CHANNEL SYSTEMS 5th International Conference

Mean Annual Flood = $7.9 \text{ m}^3/\text{s}$

Grey Stream – Constructed 2004

Lowered Right Bank Floodplain

Grey Stream – June 2005

Grey Stream – June 2008

Ellis Creek Bypass Fishway

- Ellis Ck tributary to Okanagan River
- Sewer main embedded within ~2.2 m high concrete weir across Ellis Creek
- Rainbow trout & kokanee – spawning, rearing, overwintering

Fishway Design – Plan View

Pool-Riffle Profile – Bypass Channel

Ellis Ck Bypass Fishway

Bypass Channel Flows into Deep Pool Created by Mainstem Riffle

Agricultural Lands Along Streams

Riparian Loss Affecting Channel Morphology and Aquatic Habitats

- Riparian trees and shrubs eliminated
- Accelerated bank erosion rates
- Increased sediment transport contributing to aggradation, braiding, overwidening, pool in-filling & sedimentation of spawning gravels, decreased diversity of mesohabitats
- Lack of LWD recruitment

Embedded Log Cover Structure

Series of Deflectors Along Bank

LWD structure spacing of ~4 times projection length offers some bank protection

Coldwater River

LWD Structures - Nicola River

Thank You

