

State of Climate Change Science in the **Great Lakes Basin**

A Focus on Climatology, Hydrological and Ecological Effects

September 26th, 2016 Natural Channels Conference, Session M1D

Glenn Milner Analyst, Ontario Climate Consortium

Western 😸

www.climateconnections.ca

Outline

- 1. About the OCC
- 2. State of Climate Change Science in the Great Lakes
 - Physical Effects
 - ➤ Environmental Chemistry and Pollutant Effects
 - ➤ Ecological Effects and Biodiversity
- 3. Climatology: Modeling & Trends
 - Confidence and Uncertainty
- 4. Key Messages

About OCC

The OCC was established in 2011 as a centre of expertise providing research and analysis services to municipalities, conservation authorities, and the broader public sector.

OCC in Brief

- We aim to deliver timely and high quality advice to Ontario's public and private sector to support development and implementation of climate change mitigation and adaptation work.
- We coordinate research, analysis and interpretation amongst diverse expert groups to stimulate innovative thinking.
- We facilitate knowledge exchange to ensure the effective underpinning of policy and action resides in evidencebased approaches.

State of Climate Change Science in the Great Lakes Basin: The Context

- Climate impacts were included as an Annex of the 2012 Great Lakes Water Quality Agreement (GLWQA) and the Canada-Ontario Agreement (COA) on Great Lakes Water Quality and Ecosystem Health ratified in 2014.
- Project partners include Environment Canada, the Government of Ontario and McMaster University.

Project Objectives

To provide researchers, managers and decision makers with a time-stamped (2015) examination of the state of climate change science in the Great Lakes Basin

Project Objectives

- To understand how climate change science is being used for impact analysis and adaptation planning in the Great Lakes region
- To identify trends and knowledge gaps to inform future work and new priorities for climate change science in the Great Lakes

Environment Canada

Environnement Canada

Project Study Area: Laurentian Great Lakes

Synthesis of Climate Change Impacts in the Great Lakes

Theme 1: Physical Effects

- Water Temperature
- Water levels & surface hydrology
- Ice dynamics
- Groundwater
- Natural Hazards

Theme 2: Environmental Chemistry & Pollutants

- Chemical effects
- Nutrients
- Pollutants

Theme 3: Ecological Effects and Biodiversity

- Aquatic species
- Trees and plants
- Wildlife
- Pathogens and parasites
- Invasive species

Theme 1: Physical Effects

Most Confident

Least Confident

Most Confident

Theme 2: Environmental Chemistry and Pollutants

Aquatic Species

- Less coldwater fish habitat
- Changes in competition due to range changes
- Fragmented rivers may impede expansion ability of species
- Changes in timing of phenology of amphibians

Tress and Plants

- Tree species climate niche will shift northward
- Reduced growth rates for trees in the South (likely)
- Plant productivity may increase if not limited
- Distribution and abundance of wetlands will change.
- Wetland vegetation requiring little water may grow well

Wildlife

- 45% decrease in optimal habitat for 100 climate threaten bird species in Ontario.
- Increased risk of hybridization
- Earlier breeding and hatching of bird species
- Disruptions to predatorprey relationships

Invasive species

- Non-native species may increasingly become established
- Further expansion north of existing invasive species

Pathogens

- Increase in range and prevalence for both animals and humans
- Changes in parasite-host relationships

Confidence in Research Themes

Confidence determinations based on Mastrandrea et al. (2010) matrix for the IPCC 5th Assessment Report

Agreement of information

High agreement Limited evidence	High agreement Medium evidence	High agreement Robust evidence
Medium agreement	Medium agreement	Medium agreement
Limited evidence	Medium evidence	Robust evidence
Low agreement	Low agreement	Low agreement
Limited evidence	Medium evidence	Robust evidence

Evidence strength (type, amount quality)

Confidence in Research Themes

	Theme	Data	confidence
	Climatology		
	Air temperature		high evidence high agreement
	Precipitation		high evidence
	Drought		medium agreement low evidence
			high agreement low evidence
	Wind	\circ	low agreement
	Ice storms	\bigcirc	low evidence low agreement
	Water temperature		
	Lakes	\bigcirc	high evidence low agreement
	Rivers	\bigcirc	low evidence
ects	Wetlands	\circ	high agreement low evidence
ŧ	Water levels and surface hydrology		low agreement
Physical Effects	Lakes		high evidence
hys			low agreement low evidence
	Rivers		high agreement
	Wetlands	\bigcirc	low evidence low agreement
	Ice dynamics		-
	Lakes	$\overline{\bigcirc}$	medium evidence high agreement
	Rivers	\bigcirc	low evidence low agreement
	Groundwater	\bigcirc	low evidence
	Natural Hazards		low agreement
	Flooding		medium evidence
	ricoung		medium agreement
	Fire	\bigcirc	medium evidence medium agreement
	0		low evidence
ifry T	Oxygen	\circ	low agreement
simis S	Acidity (ph)		low evidence low agreement
Che	Phosphorus	0 0 0	low evidence
onmental Cher and Pollutants	Nitrogen	0	low agreement low evidence
nd F	- Ma Ogen	_	low agreement
Environmental Chemistry and Pollutants	Carbon		low evidence low agreement
Ē	Mercury and other organohalogens		low evidence
			low agreement

	Theme	Data confidence
	Aquatic species	
	Range shifts	medium evidence medium agreement
	Genetic changes	low evidence low agreement
	Altered phenology	low evidence low agreement
	Habitat alteration	medium evidence medium agreement
	Trees and plants	
	Range shifts	medium evidence medium agreement
<u> </u>	Genetic changes	medium evidence medium agreement
versi	Altered phenology	medium evidence medium agreement
Biod	Habitat alteration Wildlife	medium evidence medium agreement
Ecological Effects and Biodiversity	Range shifts	medium evidence medium agreement
Effec	Genetic changes	low evidence low agreement
gical	Altered phenology	medium evidence medium agreement
colo	Habitat alteration	medium evidence medium agreement
ш	Pathogens and parasites	_
	Aquatic	low evidence low agreement
	Trees and plants	low evidence high agreement
	Wildlife	low evidence low agreement
	Invasive species	
	Aquatic	low evidence high agreement
	Trees and plants	low evidence high agreement
	Wildlife	low evidence low agreement

Knowledge and Research Gaps

- Better characterize the impacts of climate change on lakes
- Integration of interconnections of ecosystem responses to climate change
- Improve the understanding of:
 - Groundwater recharge and discharge patterns, including the influence of groundwater changes on streamflow
 - Consequences of disturbed regimes
 - Climate change and direct effects on chemical exposure, fate and transport
- Better dissemination of research and findings to resource users, decision makers and practitioners

Climatology: Modeling and Trends

Climate Modeling: An Overview

- Climate models simulate the interactions that drive the Earth's climate (e.g., atmosphere, land surface).
- Climate models discretize equations for energy and fluid motion and integrate these over time.
- Processes are solved within each grid and at the interface between grid cells.
- Local-scale processes (e.g., convection) can be difficult for models to capture.

Climate Model Resolution

Global Climate Model (GCM)

- 20 Climate Modeling Centres
- ~150 to 200 km² grid cells

Regional Climate Model (RCM)

- Downscaled Models (Dynamically or Statistically)
- ~10 to 50 km² grid cells

Climate Trends in Ontario: Annual Temperature

Future (2080s)

Credit: Zhu and Deng (2014). Ontario climate change projections

Climate Trends in Ontario: Extreme Precipitation

Historical (1981-2010)

Future (2050s)

Credit: Zhu and Deng (2014). Ontario climate change projections

Climate Trends in Peel Region: Extreme Precipitation

1-Day Maximum Precipitation

Historical: 37mm

2050s: 8% increase

5-Day Maximum Precipitation

• Historical: 59.2mm

• 2050s: 10% increase

Extreme precipitation driven commonly driven by:

- 1. Large-scale synoptic systems
- 2. Local scale convection (thunderstorm, lake-breeze convergence)

Knowledge Gaps in Climate Modeling

- Local Earth and atmospheric feedback processes across the Basin, including those driven by detail missing in current models (e.g., land cover).
- Need for integration of:
 - Emerging model scenarios into research
 - Land use-regulation and management
 - Cumulative effects of environmental and climate stressors and impacts
 - Spatial dynamics of lakes into water temperature modeling
 - Changes in wind into ice dynamic models
- Validate model performance by prognostic and retrospective analyses.

Uncertainty in Climate Modeling

- Why does uncertainty exist?
 - Natural variability between locations
 - > Large-scale variation in climate due to oscillations (e.g., El Nino)
 - > Embedded assumptions within climate models
 - Missing information to drive climate models (e.g., local convective activity, historical wind data)
- Certain climate indicators are more uncertain to predict than others (e.g. Extreme Winds very difficult)

Reality of Uncertainty

Dealing with Uncertainty

- Strive to incorporate the best available climate data and trends in assessments when addressing impacts or designing systems.
- 2. If possible, use an 'ensemble' approach with models and scenarios to account for a *range* of plausible futures (e.g., test system sensitivity).
- 3. Be conservative when estimating risk with climate information.
- 4. Recognize ongoing decisions and human action will influence the future climate conditions and there will be a need for updating standards informed by climate data.

Dealing with Uncertainty: Characterizing Confidence in Climate Trends

- Temperature, Extreme Heat: Very Likely Increase
- Extreme Cold: Very Likely Decrease
- Precipitation, Extreme Precipitation: Likely Increase*
- Wind Velocity: About as Likely as Not to remain unchanged

Term	Likelihood of the Outcome
Virtually certain	99 – 100% probability
Very likely	90 – 100% probability
Likely	66 – 100% probability
About as likely as not	33 – 66% probability
Unlikely	0 – 33% probability
Very unlikely	0 – 10% probability
Exceptionally unlikely	0 – 1% probability

Key Messages

- Climate change may be the greatest environmental challenge facing ecosystem health in the Great Lakes Basin.
- Anticipated climate impacts are widespread, and some are more likely than others.
- It is important to include climate model outputs and trends when addressing climate change in a project, but...
- Shift away focus from 'precise' future climate conditions being provided from climate models.
 - Instead: Flexible solutions & strategies are needed that address greatest impacts and provide multiple benefits.

Thank You

Questions?

Glenn Milner
Analyst, Ontario Climate Consortium
gmilner@trca.on.ca