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Copeland Method: for a given Width:
Flow resistance: Q = f(Depth, Slope)

Sediment transport: Q. :f(Depth, Slope)
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—— Stream Power (2yr) ~——Stream Power (5yr)

Stream Power (10yr) = =-Critical Power - Surface Material (Range)
——Stream Power (20yr) ——Stream Power (50yr)
——Stream Power (100yr) --- Critical Power - Subsurface Material (Range)
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Mical Tal: Interactions between vegetation and braiding leading to a single-thread channel



Mical Tal: Interactions between vegetation and braiding leading to single-thread channel - PhD thesis
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Hydraulic Geometry: Width as a function of Discharge, USA and UK

Soar and Thorne (2001)



WIDTH: feet

DEPTH: feet

DRAINAGE AREA: square miles

A San Francisco Bay region at
30" annual precipitation
B Eastern United States

C Upper Green River, Wyoming
D Upper Salmon River, Idaho
(Emmett 1975)
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Level IIT Ecoregions of the Continental United States
(Pevised April 3

13)




Coast Range Columbia

Plateau

Cascade Range

From: Castro (1996)



Channel Width (feet)
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Pacific North West: Width vs Discharge

Coast Range ~—~ R*=0.76

Columbia Plateau R2=0.87

Cascade Range  R?=0.84
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From: Castro (1996)
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River profile adjusted to
the lake (local) base level

River profile adjusted to
the marine base level

River profile as it would appear

in the absence of the lake After Catuneanu (2002)

Modified from: sepmstrata.org
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Lane Balance as adapted by Pollock et al., 2014



Purposeful introduction
of 20 beaver in the
southern Andes in 1946

TIERRA DEL FUEGO
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Industrious, shy herbivores they may be, but
the beavers of the Tierra del Fuego archipelago
on the southern tip of South America are such
a menace that scientists are planning the larg-
est eradication project ever attempted.

In the 1940s, 50 North American beavers
(Castor canadensis) were introduced to the area
by the Argentine government to help start a
fur industry — their numbers
have now swelled to an estimated
100,000. The aquatic rodents,
which have thrived in the absence
of native predators, have invaded
roughly 16 million hectares of unique, indige-

“"We will move in
on the beaversin
arolling front."

Tierra del Feo: the beavers u die

areas become meadows that then invite exotic
species. “The change in the forested portion of
this biome is the largest landscape-level altera-
tion in the Holocene — that is, approximately
10,000 years,” Anderson says.

The Argentine and Chilean governments are
now reviewing a feasibility study on a total erad-
ication of these beavers, which was undertaken
by an international team including
Donlan. It would be an eradication
over the largest area ever attempted
“by an order of magnitude”, Donlan
says. Beaver-control projects, such
as killing traps, are now being ramped up in a

Beavers are capable

of devastating
ecosystems (inset).

he says, citing the recent eradication of some
140,000 goats from more than 500,000 hectares
in the Galapagos Islands. The most likely sce-
nario would be to go in with trappers and dogs
using helicopters and boats, and adapting tech-
niques from beaver control in the United States
and Canada, Donlan says. “We’ll have to move
in on the beavers in a rolling front, going from
watershed to watershed to remove them, with
a massive monitoring programme behind it to
make sure they have all been eradicated”
Anderson, who reviewed the feasibility
study, also thinks eradi o o

“The beavers only live ~ Nature 453: 7198 (Choi 2008)
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Small animals -- Big impacts:
The cumulative effects of the other guys




Bed roughness and bed sediment transport

Sediment characteristics known to be related to grain-scale
processes and micro-topography of the bed

Orientation

Pivot angle

l / Imbrication Protrusion




Benthic life — animals live in and work on the bed

Relatively little is known about their impacts:

- Despite their known significance elsewhere

- Despite their great diversity and abundance

- Despite the known importance of grain-scale processes




Caddisfly nets

e Dominate biomass
e Densities: 1,000s m2
* Km’s of silk each year




Caddisfly nets

Shields parameter (mean * 2 SE)
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Caddisfly shell cases

12 million cases in a 5 km reach

240 million grains (0.2— 5 mm)

8 metric tonnes

Grain Size Distribution: Surber Site 4
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Crayfish Control

6-hours activity doubled bed sediment
yield from water-worked substrates



Crayfish

Turbidity peaks coincide with
nocturnal peaks in crayfish activity.

20 to 40% increase in fine
sediment leaving the catchment
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Mussels as ecosystem engineers
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Research performed by Brandon Sansom —
SUNY Buffalo PhD student
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B n"'dop Sansom — SUNY Buffalo PhD student
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Sediment A Ii Slope,
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Silk, Roots, \{ \' Burrowing,
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Current and
Historical
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Actions

Agriculture
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Direct Impacts
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dynamics
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non-native
flota and
fauna species

Anticipated
Outcomes

Remove dikes,
levees, and water
control structures

Proposed
Conceptual Actions

Instructions: The left-hand column pane indicates the type of action or response within a given row. Red arrows within this pane read from the top
down indicate the current and historical land-use management practices that affect the Site, and the cascading negative physical and biological
effects on the landscape and resources. Green arrows read from the bottom up within this pane indicate the proposed restoration and mitigation
actions that are intended to reverse the adverse effects of land-use management actions. Linkages of individual elements between the rows show

the complex and inter-related relationships that exist within the Site.
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Figure 14.

Conceptual Model for the Proposed Bank Site - Wapato Valley Mitigation and Conservation Bank
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g Current and Historical Management Actios
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e(/ Diagram drawn by Kelley
Jorgensen and copyrighted to

Plas Newydd Farm.

W Biological C ces T

Consequences

e PLAs NEwWYDD FARM
i ®) ed Outcomes e EST.1941 @

Outcomes CONSERVATION PROGRAM

http://pnfarm.com/contact-us/
Proposed Conceptual Actions

Instructions: The left-hand column pane indicates the type of action or response within a given row. Red arrows within this pane read from the top
down indicate the current and historical land-use management practices that affect the Site, and the cascading negative physical and biological
effects on the landscape and resources. Green arrows read from the bottom up within this pane indicate the proposed restoration and mitigation

actions that are intended to reverse the adverse effects of land-use management actions. Linkages of individual elements between the rows show

the complex and inter-related relationships that exist within the Site.

Figure 14. Conceptual Model for the Proposed Bank Site - Wapato Valley Mitigation and Conservation Bank
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North American
Biomes '

[ Arctic Cordillera = Pad

“ecoregions - areas of general similarity b,
in ecosystems and environmental f{
resources identified through the analysis ¢ ¢
of geology, physiography, vegetation,
climate, soils, land use, wildlife, and
hydrology, that affect or reflect
differences in ecosystem quality and L

integrity”

J.M. Omernik in 1987

http://www.morning-earth.org/Graphic-E/BIOSPHERE/Bios-PL-Intro.htm
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Terrestrial ecozones [3]
- 1 Arctic Cordillera

2 Northern Arctic

3 Southern Arctic

4 Taiga Plains

5 Taiga Shield

6 Boreal Shield

7 Atlantic Maritime
8 Mixed Wood Plains
9 Boreal Plains
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Marine ecoregions 3

I:I 1 Strait of Georgia

|| 2 southern Shelf
[ 3 offshore Pacific
"] 4 Northern Shelf

i 5 Arctic Basin

& Western Arctic

7 Arctic Archipelago
8 Eastern Arctic

9 Hudson Bay Complex
10 N.L-Labrador Shelves
11 Scotian Shelf

12 Gulf of St. Lawrence

Source(s): Wiken, E.B,, D. Gauthier, I. Marshall, K. Lawton and H. Hirvonen, 1996, A Perspective on Canada’s Fcosystems: An Overview of the Terrestrial
and Marine Ecozones, Canadian Council on Ecological Areas, Occasional Paper, no. 14, Ottawa. Fisheries and Oceans Canada, 2009, Development
of a Framewark and Principles for the Blogeographic Oassification of Canadian Marine Aveas, Fisheries and Oceans Canada Canadian Sclence
Advisory Secretariat, Scientific Advisory Report 20049/056.
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From Oxbow Tailings Restoration, Middle Fork John Day, BOR
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http://bigthink.com/in-their-own-words/plants-animals-humans-we-are-all-of-one-original-genome
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So what?

A Biomic Restoration Project is not only a Design Exercise
because:

Natural channels are not designed:
they Evolve.......



Plan river restoration that can adapt to future land-
use and climate changes however they unfold:

Planning evolutionary restoration is more like organising and hosting a successful
house party..............

Location, location, location

Venue — how much space have you got: how many friends can you accommodate
comfortably and safely?

Invitation list - who to invite and who not to — given the purpose of the event?
Catering — there must be enough food and it must meet guests’ dietary needs.
Behaviour — will there be a lot of noise and disruption, will your friends get along?
Breakables — do you have heirlooms and treasures that you need to protect?
Neighbours — you must inform them, or better yet invite them too?

The Authorities — from whom do you need permission and if so from whom?

Think long-term: like the organisers of the Natural Channel Systems
conference....
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Prorihe
telligent,

ut the one most
responsive to
ange.

~Charles Darwin, 1809




Biomic/Anthromic River Restoration

Defined by Nature

Led by Scientists
Delivered by Engineers

Diagram drawn by
Colin Thorne



